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SUMMARY

Many biological macromolecules are known to interact either with themselves,
with other macromolecules or with small compounds. A simple equilibrium method
for detecting and quantifying these interactions is to study the mutual influence of
the molecules on their respective counter-current distribution in liquid-liquid biphasic
systems.

The theoretical counter-current distribution patterns for the components in an
interacting system, A + B = AB, have been calculated for two models in order to
establish the boundary conditions and to optimize the experimental procedure. The
patterns have been calculated for a range of association constants, partition coeﬁi—
cients and initial concentrations of the two reactants.

INTRODUCTION

It is well established that biological macromolecules in solution may interact
with themselves (self-association), with other macromolecules or with small com-
pounds. Many of these interactions are known to be essential for the operation and
regulation of metabolic processes. Examples of interacting systems that have been
studied extensively are protein-small ligand’-%, DNA-small ligand’, protein-DNA3-19,
RNA-RNA!-13  protein—-RNA!!-1%.15 and protein—protein'®—2>. In some of these
instances the biological consequences also have been established.

Of particular interest are protein—protein interactions, especially those between
enzymes that catalyse consecutive metabolic steps. Such interactions would probably
offer many advantages for the cell, viz., chanelling effect, shiclding effect. These
complexes should be of a dynamic nature, probably involving relatively weak inter-
actions between the proteins. A simple equilibrium method for detecting and quan-
tifying interactions between molecules is to study the mutual influence of the molecules
on their respective partition in liquid-liquid biphasic systems?$:?’. The counter-current
distribution (CCD) technique?® provides an accurate method for the determination



2 L. BACKMAN, V. SHANBHAG

of partition coefficients and therefore should be very useful for detecting even small
changes in them. Thus, CCD in aqueous—aqueous biphasic systems?? has been shown
to be an eflicient method for detecting protein—protein interactions3®. This method
should be very suitable for the study of interactions involving biological macro-
molecules, as both of the phases are rich in water (75-95%) and seem to have a sta-
bilizing effect on structure and biological activities. However, it is necessary to make
a thorough theoretical study of the CCD of interacting systems in order to establish
the boundary conditions of the method as well as to be able to make a physico-
chemical analysis of the experimental results.

For this purpose, it was necessary o investigate how the CCD patterns are
dependent on the association constant, the partition coefficients and the initial con-
centrations of the components. The theoretical calculations have been designed for
adaptation to future experiments involving macromolecules. We have therefore
chosen to start initially only with the reactants and to calculate the distribution
~ patterns in.terms of total concentration per tube of each of the reactants, A and B.

The earlier approach used by Bethune and Kegeles3'-33 for the study of the
CCD of 1:1 interacting systems is not useful for our purpose, because they
calculated ‘the distribution patterns in terms of the total mass of each of the
components in every tube following the dissociation of the complex initially present
in unit concentration in the zeroth tube. Their procedure also requires the simplifying
assumption that the volumes of the two phases are identical. In this paper, which is
the first in a series on protein—protein interactions, only 1:1 interactions are discussed
for two sets of experimental conditions.

CALCULATIONS

Consider a biphasic system in which the two phases are immiscible, no volume
change occurs upon mixing and equilibration, all solutions are thermodynamically
ideal and there is equilibrium within and between the phases before a transfer. If the
reaction A + B = AB may occur in such a system, then the following equilibrium
condition must hold:

| ettt et b

U '
! Ay . B, == AB, .
S
1 t
! A, - B, =—=AB, '
b e e e e 4

where the subscripts u and 1 refer to the upper and the lower phases, respectively.
The formation of AB from A and B may be described by the association con-

stant, K|, defined as

__ [AB]
K= Ta1m1 M

where the square brackets dencte concentrations in moles per litre. Then the asso-
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ciation constants in the upper and the lower phase are given by eqnms. 2 and 3,
respectively:

[AB].

&= TaL BL @
_ _[AB] . 5
K =1anien ®

The partition of a substance, Q, in a biphasic system may be described by its partition
coefficient, Kq, defined as

Ka— 130 | @
Eqgns. 5, 6 and 7 then give the partition coefficients K, K; and K5, respectwely

K = Tan ©

Ky — ik | _' ©

Kue = ![%—}}33]]3! @)

If the right-hand side of eqn. 2 is substituted by eqns. 3, 3, 6 and' 7, the relationship
between the association constant in the upper phase, K, and the association constant
in the lower phase, K, is given by

KAB

Kaka ©

K,=XK, -

The subsequent equations are developed for repeated partitions, namely CCD. In
this procedure, the lower phase is held stationary and the upper phase is transfered
after equilibrium to the next tube in sequence.

The total concentrations of A and, B in the ith tube after n transfers are given
by eqns. 9 and 10, respectively:

— ir in V '3 ____Vl___
A% = (AL + [ABE) ey + (AR + ABI) 5 O
in n in Vu ' o Vi
Bl = (IBL" + [ABE) 52 + (IBI" + [AB) 55 (10)

where ¥V, and V, are the volumes of the upper and the lower phase, respectively.

Model 1 .
In this model, A and B are initially introduced only to tube zero, and conse-
quently eqns. 11 and 12 give the total concentrations of A and B before the first
transfer:

[Ale. = ([A)Y + [ABLY) p + (IAL® + [AB") ¢ an
[Blio: = (IBIY’ + [ABE) p + (BIY® + [ABL") ¢ (12)
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wherep——————andq———V— When eqns. 3, 5, 6 2ad 7 are inserted, eqns.
’ . u + Vl V -+ Vl

11 and 12 can be rewritten as _
[Ale: = [A]” (e + 7K, [BII) 13)
Bl = [BI° (B + ¥K, [A (19)

where a = pK, + q, 8 = pKg + gand ¥y = pKag + q.
The concentrations of A and B in the ith tube after n transfers can correspon-
dingly be written as

[Alf = [AL" (¢ + 7K, [B®) 15)
[BI%, — [BI" (8 + 7K, [AL™ (16)

Given the initial values of A and B, ie., [A]%, and [B}%,, and assigning values to
K, and partition coefficients, [A]}° and [BI¢° can be determined, using eqgns. 13 and 4.
Once [A}° and [B]{® have been obtained, the equilibrium concentrations of AB, A
and B in each phase can be calculated using egns. 3, 5, 6 and 7. The upper phase is
then moved to tube one and the lower phase remains in tube zero. This constitutes
the first transfer, immediately after which

[Alk = ¢ (AT + [ABE) an
[BI — ¢ ((BE" + [ABI") (18)
AL = p (A + [ABIY (19
[BI. — » (IBI® + [ABIY) 20)

Eqns. 15 a‘nd 16 are then solved for tubes zero and one using the new values of A and
B, yielding the new equilibrium concentrations of A, B and AB in these tubes. This
constitutes the equilibrium before the second transfer, which when completed gives

[ALe. = g (A" + [ABI)
[Blio: = ¢ (IBIY* -+ [AB]Y)
[ALS = p (AL + [ABL) + ¢ (IAL" + [ABJ")
[BYe. = p (IBLY' + [ABL) + ¢ ([BE1 + [ABL)
[AT:: = p (AL + [ABL)
[Ble. = p ([BL." + [ABL)

By repetition of this process, the final CCD curves are obtained for n transfers, where
n is the total number of transfers.
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Model 2

. The only difference between models  and 2 is in the mode of the mif.ia! m-.;;f:
troduction of A and B. In model I, both' A and B are introdiced only to tube zero,; 7
but in model 2, only A is introduced mlttally to'tube zero whereas B is mtmduced in ?

the same concentration to all the tubes. 7
This does not affect the equilibrium concentrations befo:e the ﬁr*t; transfer in

relation to model 1. However, 1mmedtately after thc ﬁrst transfer, eqns. 18 and 20_ ’

R
[Bjtot—P([B]oo—r[AB]“) ‘I[B]l St

In the same manner as before, egns. 15 andwlé, contammg the new vaIuesoannéB, o
are solved for the new equilibrinum concentrations of A, B an¢ AB in tubes zero and
one. The second transfer is then carried out, and after it has been completed we have

AR = QAR +ABRY
B2 — ¢ (BE* + (ABEY +ppBI® .
[AJZ = p (AR + [ABE) + ¢ GAR* + [ABEY)

[BIZ = p ((BI + [AB) + ¢ (BE* + [ABE)

[AE = p (AL + [ABE)

[BIZ. = (B + [ABL) + ¢ [BI?

As before, the CCD curves are obtamed forn trcmsfcrs by tepetmon cf thxs prowss
it is necessary to use a high-speed. computer; ‘as - this process involves the‘ -
solution of a large number of equation systems to investigate a range-of arbitarily
chosen values of the variable parameters, i.e., the association’ constants; the partition
cocflicients and the intial concentrations of A and B. The program, wntten in Fortran
for the CDC CYBER-172, was kindly supplied b,r Dr. Gunnar Eriksscn, Department
of Inorganic Chemistry, University of Ume&™. ~ -
The resulis of the calculations were checked in three ways. e 2
(1) the total amount of A and B in a!i tubes after evety transfer shoutd equal_ =
the amount initially introduced;: o B
() if K, = K| = @, for any values af pamtlon coeﬁic:ents and mﬁal concen—_ :
trations of A and B, the resulting curves should be mdistingmshabie from the _mlcn—‘
lated binomial curve for a single substance with the same partition: coeﬁiczent' el T

(3) if Ky = Kr = K,3; for any values of association constants, the tesultmg

curves should fit perfectly a w.lcu!ateé bmonmal curve: thh the san}e patutmn co-
efficient. :
In all calculations the totai amount of matenal in a!i mb&s never dzﬁ‘ered from .
that initizlly introduced by more than § parts in-107. The secemi and thmi check were
both satisfied to 1 part in 105. Lo N R
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RESULTS

The association constant and the volume of the upper phase were identical with

KiKp = Kyp (23)

The calculations were carried out for the number of transfers, n, set at 59. To in-
vestigate whether or not an obtained curve has changed shape or position, it should
be compared with a calculated binomial curve. However, this comparision can be
done equally well with a curve obtained for association constants of 1 M~! and
initial concentrations of I mM, because on the scale used in the graphs this curve will
coincide with a binomial curve. Further, a binomial curve will change only its magni-
tude as the initial concentration is varied.

The above relationship between the partition coefficient of the complex, Kug,
and those of the reactants, K, and Kp, divides the results naturally into three sets for
each model. In the first set, the partition coefficient of the complex lies between those of
the reactants. According to eqn. 23, this condition is met only when the partition
coefficient of one of the reactants is less than 1.0 and the other is greater than 1.0.

The second set includes cases in which the partition coefficient of the complex
is either greater or less than those of both reactants. This condition is valid only
when the partition coefficients of both reactants are greater or less than 1.0.

In the third set, both reactants have the same partition coefficients, which
differ from that of the complex, i.e., Ky = Kg # 1.

Model 1

Set I. Ky < Kyg < K. As A and B are only labels, this also includes Kz <
K,z < K,. The initial concentration of A was set to 1 mM and the values of K, and
Kpg were assigned as 0.5 and 2.0, respectively, in all cases of this set.

In Fig. la, the calculated curves for K, = K, = 1 M~! and [BJ’, = [A]%,
are shown. When K, and K, are increased to 10* M !, the adjacent sides of the curves
approach each other and the heights of the curves are lowered, but their positions are
not changed much, as can be seen in Fig. 1b in comparison with Fig. 14.

When the association constants are increased further, the overlapping of the
curves becomes greater and the positions of the curves approach each other. Finally,
at infinite association constants, the curves overlap each other completely and are
indistinguishable from a binomial curve calculated for a single substance with K= 1.0.
If the initial concentration of one of the reactants is increased, the change in shape and
position of the other curve becomes more pronounced as the association constants
are increased. This is shown in Fig. Ic and d, where K, = K; = 100 M/ ~! and
10* Af 1, respectively, and [B]?% = 100 mM. With increasing association constants,
A will move more rapidly and, obviously, a corresponding amount of B will move
more slowly. Finally, at infinite association constants, the curve of A will fit perfectly
a binomial curve calculated for the partition coefficient of the complex. However, the
curve of B will not fit a binomial curve because it is made up of both free B and B
bound as AB.

For the opposite case, when A is in excess, the resulting curves of A and B
will be the mirror images of the curves obtained when B is in excess.
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Flg 1. Theoretical CCD curves according to model 1 of an mtemctmg system, A ( ) and
B (———), with K. =0.5 and Kz = 2.0. (@) [A]"n‘,’t 0 =1mM and K. =K, =1 M~1;
®) [ALL, = [Bl;, = 1 mMand K. = K, = 10° M~";(c) [A]‘::g = | ma, [BE,, = 100 mMand K, =

K, = 100 M*; (@) [ATS, = I mM, [BI, = 100 mM and K, = K; = 10° M.

Set 2. Ky < Ky < Kg<lorl < Kyg< K, <Kgp. In this set, K, = 0.2
and Kz = 0.5 were assigned for all cases. For partition coefficients greater than unity,
ie., Ko, = 5.0 and Ky = 2.0, the resulting curves will be the mirror unages of the
curves obtained for K, = 0.2 and Kz = 0.5.

Fig. 2a shows the calculated curves obtained for K, = K, =1M"' and
[AI’S = [B]?, = | mAMf. When the ‘association constants are increased, the shape and
position of the curves are affected, as can be seen in Fig. 2b. A is moving slower so
that both the position and height of its curve are changed in comparison with Fig. 2a. .
The same also appears for B, but the change is much more apparent. When the
association constants are increased, larger amounts of both A and B are moving with
the speed of the complex, i.e., more material is moving slower. For infinite association
constants, all A and B will be in the complex form and the completely overlapping
curves which result will be indistinguishable from a single binomial curve. ,

If the initial concentration of one of the reactants is increased to 100 mM, the
curve of the other reactant will change most noticeably in position ard shape, as can
be seen in Fig. 2c and d. If B is in excess its curve will only broaden, whereas the
position of the other curve will be retarded when the association constants are in-
creased. The change is more noticeable when A is in excess. Then, both the shape and
position of the curve of B are changed with increasing association constants. -For
infinite association constants, the curve of the reactant present at smaller concen-
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Fig. 2. Theoretical CCD curves according to model 1 of an interacting system, A ( ) and B
(——=), with X, =02 and Kz =0.5. @) [A], =(B] =1mM and K, =K, =1M"1; (b)

tot tot

[AlY}, = [BI?, = 1 mM and K, = K, = 10* M~1; (c) [A]Y, = 1 mM, {BY, = 100 mM and K, =

tot

Ky = 100 M~%; (d) [A]®, = 100 mM, [BI®%, = 1 mM and K, = K; — 100 M,

tration will fit a binomial curve calculated with the same partition coefficient as the
complex, whereas the other curve will be slightly broadened.

Set 3. Kyg < Ky = Kg << lorl < K, = Kg << K,z For the first alternative
of this sei, the partition coefficients of A and B were both assigned the value 0.5. For
the second alternative (with partition coefficients inverted), the curves will be mirror
images of the curves calculated for K, = Kz = 0.5. When the initial concentrations
of A and B are equal, their curves will always coincide.

Fig. 3a shows the calculated curves, which are the same as the binomial ones,
for association constants of 1 AM/~! and the same initial concentration of A and B,
ie., 1| mM.

With increasing association constants, both A and B move slower, causing a
change in both position and shape of the curves (Fig. 3b). As before, an increased
initial concentration of one of the reactants causes its curve to be relatively unaffected
compared with the curve of the other reactant when the association constants are
increased (Fig. 3c).

This set also corresponds to the dimerization process, A + A = A,. The
dimerization curves are simply obtained by summing the calculated curves of A and B.
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Fig. 3. Theoretical CCD curves according to model 1 of an interacting system, A (- ) and B

(———), with Ka = Ka = 0.5. (a) [AF®, = [BI’, = I mM and K. = K, = 1 M~1; (b) [AF®, =
(B, = I mM and K, = K, = 10* M~'; (c) [AI®®, = I mM, [BI®>, = 100 mM and K.= K, = 100
ML,

Model 2

The values of the partition coefficients used for the calculations of this model
were the same as those for model 1. Further, the initial concentrations of B in each
tube used for all calculations were 1 mAf.

Set I. K, << K45 < K. As before, when the association constants are set
equal to 1 M~ and [A]%, = 1mM, neither the curve of A nor the curve of B is
affected, as shown in Fig. 4a. With increasing association constants, the curve of A
approaches a binomial curve calculated with the same partition coefiicient as for the
complex. The curve of B, on the other hand, shows a peak and a dip, as can be seen
in Fig. 4b.

If the initial concentration of A is increased, the most significant change will
be seen on the curve of B, whereas the curve of A is relatively unaffected in comparison
with Fig. 4a. This is shown in Fig. 4c, where K, = K, = 100 M~! and [A]® =
100 mM. With increasing assaciation constants, more and more of B will be retarded; -
as can be seen in Fig. 4d, where K, = K| = 10* M 1. To the same extent, more and
more of A will move faster, resulting in a broadening and distortion of the curve of A.

Set 2. Kyp < Ky, < Kg< Iorl < Kg< Ky <K,z Fig.:5a shows the cal-
culated curves obtained for K, = K; = 1 M " and [A[% = 1 mM. Neither the curve
of A nor the curve of B is affected.

Increasing amounts of complex will be formed with increasing association
constants, and therefore A and B will both move slower, producing a change in both
the shape and position of their curves (Fig. 5b). If the initial concentration of A is
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Fig. 4. Theoretical CCD curves according to model 2 of an interacting system, A ( )} and B

(— ——), with K, = 0.5 and Ks = 2.0. In all instances the initial concentration of B in every tube was
It mM. (@) [A19, = 1 mM and K, = K, =1 ML (b) [Al{, =1 mM and K. = K; = 10° M~*;
©) [AT?, = 100 mM and K, = K; = 100 M~1; (d) [A]}}, = 100 mM and K, = K, = 10* M~

Fig. 5. Theoretical CCD curves according to model 2 of an interacting system, A ( ) and B
(— —--), with K, = 0.2 and Kz = 0.5. In all instances the initial concentration of B in every tube was

1 mM. () [AI®, = 1 mM and K, = K; = 1 M~; (b) [A]®’, = 1 mM and K, = K, = 10° M~%;

tot

(c) [AJY’, = 100 mM and K, = K; = 100 ML,

tot

increased, the most significant change will be seen on the curve of B, whereas the
curve of A is relatively unchanged (Fig. 5¢).

Set 3. Kyp << Ky=Kg<<!lorl <K = Kg< Kz The unaffected curves
of A and B, obtained for association constants of 1 M~! and [A]} = 1 mM, are
shown in Fig. 6a. When the association constants are increased, more of both A and
B will move slower, causing a change in both position and shape of their curves
(Fig. 6b). ‘

An increased initial concentration of A gives rise to a pronounced change in
the shape of the curve of B, whereas the curve of A is relatively unaffected, as can be
seen in Fig. 6¢. The lack of variation in shape and position of the curve of the reactant
in excess is dependent on the extent of excess. On the scale we have chosen for the
graphs, a relatively unchanged curve will be obtained for the reactant which is in
50-100-fold excess. When the excess is lower, the resulting curves will begin to
approach the cases where the initial concentrations are equal.

An important consequence, not shown in the figures, is that no matter how the
association constants, partition coefficients and initial concentrations are chosen, the
complex will never move in front of or lag behind the free reactants, A and B.



PROTEIN-PROTEIN INTERACTIONS STUDIED BY CCD. L. - N 11

[Alrmm L L [Blrmm
Q10F-------- S R LR EEE RS 10
oost ©5
Q
l/ T T T '
OMOp---"] Neu_ __cmmmmmmmm oo 1.0
005} 105
b
S ' ‘ s
_______________ 10
los
C
o 20 = 40 = 60

Tube number

Fig. 6. Theoretical CCD curves according to madel 2 of an interacting system, A ( )and B
(———-), with K, = Ka = 0.5. In all instances the intial concentration of B in every tube was 1 mM.
@ AP, =1mM and K, =K, =1M": (b) [A]°, =1 mM and K, =K, =106* M™%, (c}

tot

[AJ2, = 100 mAf and K., = K, = 100 M.

DISCUSSION

The calculations presented show that CCD of substances in a 1:1 interacting system
can be exa:tly predicted if the assumptions regarding the ideality of the equilibrium
and partition steps hold. Under such conditions, the influence of oné substance on the
CCD or partition of another substance is evidence for an interaction between these
two substances.

The shape and position of the distribution curves, i.e., the total concentration
of each substance in every tube, are not only determined by the association constants
but also by the initial concentrations of the interacting substances. This is an obliga-
tory consequence of the law of mass action (eqn. 1). The higher the initial concen-
trations of the interacting substances are, the greater is the amount of complex formed
and the greater are the changes in the shape and position of the curves. Hence, a
slight difference between interacting and non-interacting distribution curves can be
enhanced by increasing the initial concentration of one or both of the substances
involved. - '
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The effect of the interaction on the theoretical distribution curves also depends
on the partition coefficients of both the interacting substances and the complex
formed, as is evident from the figures. By adjusting the partition coefficients according
to the three sets, it is possible to confirm the existence of an interaction. More in-
formation about the interacting system can be obtained by letting both of the sub-
stances alternately be in excess.

The CCD technique is also applicable to the quantitative determination of
molecular interactions, i.e., the determination of the association constant. When
carrying out an experiment both to detect and to quantify interactions, it is necessary
not only to distribute the two substances together at different concentrations, but also
separately to obtain the partition coefficients of the substances. The partition coeffi-
cient of the complex formed is then given by eqn. 23, assuming that the association
constants in the upper and lower phase, respectively, are identical, or more generally
by eqn. 8.

By caiculating distribution curves from these partition coefficients, the assigned
values of the association constants and the known initial concentrations of the sub-
stances, it should be possible to find a best fitting theoretical pair of curves to match
the experimental curves. From these calculated curves, it is then possible to obtain
the association constants.

The choice of biphasic system is independent of these two models, -but for
molecules of biological origin we believe that aqueous-aqueous biphasic systems are
the most useful. These systems, developed by Albertsson?®, are advantageous in many
respects; the advantages include the solubility and stability of macromolecules in these
systems, the water content and, particularly, the ease with which the partition coeffi-
ciant can be adjusted by changing the composition of the biphasic system.

It has recently been shown that poly(ethylene glycol), one of the polymers used
in these systems, favours the interaction between malate dehydrogenase and citrate
synthase?*. Therefore, interactions might, at least between proteins, be more likely to
occur in aqueous-aqueous biphasic systems than in buffer solutions. The solubility
of proteins and other macromolecules can also easily be increased at least 5-fold by
adding zwitterions, i.e., betaine or glycine, to the biphasic system without altering
the partition coeflicients. This enhanced solubility sets a boundary for the minimal
value of rhe association constants for interacting proteins and macromolecules to
50-100 M ~*, below which it is not possible to detect an interaction. Still weaker
interactions can be detected between macromolecules and small ligands, because the
initial concentration of a small ligand can be made much higher than that of a macro-
molecule. The choice of model is dependent on both the nature and the amount
available of the substances under study.

When working with enzymes, generally the total enzymatic activities and not
the total concentration are measured in every tube. Therefore, a change in distribution
curves according to the first - model need not necessarily mean that the enzymes are
izteracting. It might, however, be an activation of one of the enzymes without complex
formation. With the second model it is possible to distinguish between an inferaction
and an activation, because a change in distribution curves due to an interaction will
always have an appearance similar to those in Figs. 4-6. On the other hand, the second
model needs larger amounts of material than does the first.

The CCD technique in aqueous-aqueous biphasic systems according to model
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I has, in fact, already been used io show the existence of a specific interaction between
malate dehydrogenase and aspartate aminotransferase®® and an interaction between
haemoglobin and carbonic anhydrase3’. These models are at present being applied
to the study of interactions between enzymes of the glycolytic system and of the
tricarboxylic acid cycle, and also dimerizations of proteins.
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