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SUMMARY 

Many biological macromolecules are known to interact either with themselves, 
with other macromolecules or with small compounds. A simple equilibrium method 
for detecting and quantifying these interactions is to study the mutual intluence of 
the molecules on their respective counter-current distribution in liquid-liquid biphasic 
systems. 

The theoretical counter-current distribution patterns for the components in an 
interacting system, A + B + AB, have been calculated for two models in order to 
establish the boundary conditions and to optimize the experimental procedure. The 
patterns have been calculated for a range of association constants, partition coeffi- 
cients and initial concentrations of the two reactants. 

INTRODUCI-ION 

It is we!1 established that biological macromolecules in solution may interact 
with themselves (self-association), with other macromolecules or with small com- 
pounds. Many of these interactions are known to be essential for the operation and 
regulation of metabolic processes. Examples of interacting systems that have been 
studied extensively are protein-small ligand1-6, DNA-small ligand’, protein-DNA8-‘O, 
RNA-RNA”-13, protein-RNA11*‘J*15 and protein-protein16-L5. In some of these 
instances the biological consequences also have been established. 

Of particular interest-are protein-protein interactions, especially those between 
enzymes that catalyse consecutive metabolic steps. Such interactions would probably 
offer many advantages for the cell, viz., chanelling effect, shielding effect. These 
complexes should be of a dynamic nature, probably involving relatively weak inter- 
actions between the proteins. A simple equilibrium method for detecting and quan- 
tifying interactions between molecules is to study the mutual influence of the molecules 
on their respective partition in liquid-liquid biphasic systems26~z7. The counter-current 
distribution (CCD) technique= provides an accurate method for the determination 
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of partition coefficients and therefore should be very useful for detecting even small 
changes in them. Thus, CCD in aqtteous-aqueous biphasic systemsz9 has been shown 
to be an efiicient method for detecting protein-protein interactionP. This method 
should be very suitable for the study of interactions involving biological macro- 
molecules, as both of the phases are rich in water (75-95 %) and seem to have a sta- 
bilizing effect on structure and biological activities. However, it is necessary to make 
a thorough theoretical study of the CCD of interacting systems in order to establish 
the boundary conditions of the method as well as to be able to make a physico- 
chemical analysis of the experimental results. 

For this purpose, it was necessary to investigate how the CCD patterns are 
dependent on the association constant, the partition coefEcients and the initial con- 
centrations of the components. The theoretical calculations have been designed for 
adaptation to future experiments involving macromolecules. We have therefore 
chosen to start initially only with the reactants and to calculate the distribution 
patterns in. terms of total concentration per tube of each of the reactants, A and B. 

The earlier approach used by Bethune and Kegeles31-33 for the study of the 
CCD of 1 :l interacting systems is not useful for our purpose, because they 
calculated .the distribution patterns in terms of the total mass of each of the 
components in every tube following the dissociation of the complex initially present 
in unit concentration in the zeroth tube. Their procedure also requires the simplifying 
assumption that the volumes of the two phases are identical. In this paper, which is 
the first in a series on protein-protein interactions, only 1: 1 interactions are discussed 
for two sets of experimental conditions. 

CALCULATIONS 

Consider a biphasic system in which the two phases are immiscible, no volume 
change occurs upon mixing and equilibration, all solutions are thermodynamically 
ideal and there is equilibrium within and between the phases before a transfer. If the 
reaction A f B + AB may occur in such a system, then the following equilibrium 
condition must hold : 

r-------- ----------1 

’ A I 

I u 
I 
r-- II ---:--:~~~__; 
f A, . 
* 

B, SAB, ’ 
I____-_-___---------J 

where the subscripts u and 1 refer to the upper and the lower phases, respectively. 
The formation of AB from A and B may be described by the association con- 

stant, K, defined as 

LYBI 
K = [Al PI 

(1) 

where the square brackets denote concentrations in moles per litre. Then the asso- 
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ciation constants in the upper and the lower phase are given by eqns. 2 and 3, 
respectively: 

L-1, 
fG = PI, PI, 

(3 

The partition of a substance, Q, in a biphasic system may be described by its partition 
coefficient, Kc, defined as 

K,=gj 
1 

Eqns. 5,6 and 7 then give the partition coefficients KA, KB and KAB, respectively: 

[AL 
KA =- 

WI, 

KB ==f$ 
I 

(4 

(5; 
(6) 

(7) 

If the right-hand side of eqn. 2 is substituted by eqns. 3, 5,6 and. 7, the relationship 
between the association constant in the upper phase, K,, and the association constant 
in the lower phase, K,, is given by 

Ku = KL - + 
A B 

(8) 

The subsequent equations are developed for repeated partitions, nameiy CCD. In 
this procedure, the lower phase is held stationary and the upper phase is transfered 
after equilibrium to the next tube in sequence. 

?he total concentrations of A and B in the ith tube after n transfers are given 
by eqns. 9 and 10, respectively: 

where VU and V, are the volumes of the upper and the lower phze, respectively. 

Model I _ 
In this model, A and B are initially introduced only to tube zero, and conse- 

quently eqns. 11 and 12 give the total concentrations of A and B before the first 
transfer: 

[Al% = ([Al? t b-1:) P f (IAl? + [ABI?‘I 4 or! 

[Bl::t = WI?’ -I- [ABla,O) P f (IBI?’ f EABl?‘I 4 (12) 
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svherep = V-U 
-vi f v, 

andq= v .Wheneqns_3,5,6~~d7areinse~,eqns. 
” 

s v 
1 

11 and 12 can be rewritten as 

[Ali’:t = IAl?” (a: + Y& [Bl?l 03) 

l3l:t = @I? (B i- r& [Al? (14) 

where a =p& + q,@ =pK, + qand y =pKAB + q. 
The concentrations of A and B in the ith tube after n transfers can correspon- 

dingly be written as 

Given the initial values of A and B, Le., [A]fzt and [B]ES,, and assigning values to 
KI and partition coefficients, [A]:” and [B]t” can be determined, using eqns. 13 and 14. 
Once [AjyO and p]‘p have been obtained, the equilibrium concentrations of AB, A 
and B in each phase can be calculated using eqns. 3,5,6 and 7. The upper phase is 
theo moved to tube one and the lower phase remains in tube zero. This constitutes 
the tkst transfer, immediately after 

[Al% .= 4 WI? -I- WliO) 

[Bi’:t = 4 Wl? -+ H@“I 

EN:,: = P (IN? f L-1:) 

PI::: = i ([B10,0 f BJN?I 

which 

_. (l? 

WI 

09) 

@I 

Eqns. 15 and 16 are then solved for tubes zero and one using the new values of A and 
AB in these tubes. This 
when completed gives 

B,-yielding the new equilibrium concentrations of A, B and 
constitutes the equilibrium before the second transfer, which 

EAl::t = 4 ([Al? f- LW;‘) 

PI% = q PI? + W#) 

LAl:;5, = P ([Al:’ + IABP,‘) -i- 4 (Cal:’ + WI:‘) 

Pl::t 1 P (Dl: + L-IO,‘) f q ([Bl:’ + L-1:‘) 

tAl::t = P Wl:l -i- [ABI:‘) 

[Bl::t = P ([Bl:’ f L-1:) 

By repetition of this process, the final CCD curves are obtained for n transfers, where 
n is the total nuniber of transfers. 



WItit = P t[Al: + ~-I:‘) -. 

IBIZ = P (ue t WI3 c q [BX’ . . 
_I. 

:- :, _- 

As before, the CCD: curves anz obtained for n transfks by-iqetiti~n-.of tbisprocess, 
It is necessary to use a hi&-@ computeF;'as-t.his prd‘inYoFY~ the 

sdutim of a .large number of equatim -sJistems to Wxstigate a -rang& -of~&bitaiily 
chosen values of the xxriable parameters; i.e., the assmiatioq cgus~ts; the pa&i&g 
CoeEcients and the intid concentrations of A and B_ T&e progr&m; w&ten i”:F~&m 
for the CDC CUBER-172, was kintfly;.supplied b$ Dr, Gmna~ Eriksson; :wt 
ofhorga& Cbees@y, UGvesity ofu&_ . . Ii:_.. I. : .~.-“I :-: :(;. 

The results of&e dcuhtionswerq dmkdintkree ways: -- ._;-:.. ., ‘I 
(I) the total of A and in all tubes aftez _T 

the amount initialiy - I 
; - . ;-’ 

(2) if = = for any of partition coefbicientjt,&~ 
of A and B, resulting curves be indEstinggis~abl~-from the 

for a s&de substance with the &me Ipartifiorz qxSi%cign~; -..T:‘-.’ 1. 
(3) if KA = = for my of association cm&+~tk, the~r&+&g ‘. 

curyes should fit perfectly 
_ : 

all calculations the iix aB tubes i&fir ‘i!G&ed f&ii 
that initially introduced by more than 5 parts in -L0’_ The second ad third c&i.ck wepz 
both satisfied to 1 part in 106. : _._. - ,..... ._, . . . . -. 
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RESULTS 

The association constant and the volume of the upper phase were identical with 
those of the lower phase in all calculations_ This reduces eqn. 8 to 

K.&-B = &B (23) 

The calculations tiere carried out for the number of transfers, n, set at 59. To in- 
vestigate whether or not an obtained curve has changed shape or position, it should 
be compared with a calculated binomial curve. However, this comparision can be 
done equally well with a curve obtained for association constants of 1 M-’ and 
initial concentrations of 1 mM, because- on the scale used in the graphs this curve will 
coincide with a binomial curve. Further, a binomial curve will change only its magni- 
tude as the initial concentration is varied. 

The above relationship between the partition coef5cient of the complex, KM, 
and those of the reactants, KA and KB, divides the results naturally into three sets for 
each model. In the 6rst set, the partition coefficient of the complex lies between those of 
the reactants. According to eqn . 33, this condition is diet only when the partition 
coefficient of .one of the reactants is less than 1 .O and the other is greater than 1.0. 

The second set includes cases in which the partition coefficient of the complex 
is either greater or less than those of both reactants. This condition is vaiid only 
when the partition coefficients of both reactants are greater or less than 1.0. 

in the third set, both reactants have the same partition coefficients, which 
differ from that of the complex, i.e., KA = t;cs f 1. 

Model I 
Set 1. KA -C I<,,, < KB. As A and B are only labels, this also includes Ka < 

KAB -c KA_ The initial concentration of A was set to 1 mM and the values of K, and 
Kg were assigned as 0.5 and 2.0, respectively, in all cases of this set. 

In Fig. -la, the calculated curves for Ku = Kt = 1 M-’ and [B]Ez = [A1tzC 
are shown. When K,, and Kl are increased to 101 M-l, the adjacent sides of the curves 
approach each other and the heights of the curves are lowered, but their positions are 
not changed much, as can be seen in Fig. lb in comparison with Fig. Id. 

When the association constants are increased further, the overlapping of the 
curves becomes greater and the positions of the curves approach each other. Finally, 
at infinite association constants, the curves overlap each other completely and are 
indistinguishable from a binomial curve calculated for a single substance with KS = 1.0. 
If the initial concentration of one of the reactants is increased, the change in shape and 
position of the other curve becomes more pronounced as the association constants 
are increased. This is shown in Fig. lc and d, where Ku = K, = 100 icf-’ and 
lO-’ M-l, respectively, and [B] fzt = 100 mA4. With increasing association constants, 
A will move more rapidly and, obviously, a corresponding amount of B will move 
more slowly. Finally, at infinite association constants, the curve of A will fit perfectly 
a binomial curve calculated for the partition coefficient of the complex. However, the 
curve of B will not fit a binomial curve because it is made up of both free B and B 
bound as AE. 

For the opposite case, when A is in excess, the resulting curves of A and B 
will be the mirror images of the curves obtained when B is in excess. 
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Fig. 1. Theoretical CCD CUIMS according to model 1 of an interacttg q%em, A ( -) 2nd 
B (- --), with KA = 0.5 and I& = 20. (a) [Ae* = w]zx = 1 m&f and & =-I& = 1 iSPa; 
(b) [Al::< = BE, = 1 mMandK, =K, = l@M-‘i(c)[AE* = 1 mM,@z = 100mMandKS= 
K, = 100 M-‘; (d) [Act = ImM,IB~,=100mMandiC,-4=l(rM-‘. 

Set 2. KM -c KA < Kg -c 1 or I < KB < KA < KAE_ h this set, KA = 0.2 
and KB = 0.5 were assigned for all cases. For partition coefficients greater than w&y, 
i.e., KA = 5.0 and KB = 2.0, the resuhing curves will be the mirror images of the 
curves obtained for KA = 0.2 and KB = 0.5 .? . 

Fig. 2a shows the cafcufat~ curves obtained for K, = Kl = 1 M-’ and 
[AlEt = [B]z= = 1 m&f_ When the association constants are mcreased, the shape and 
position of the curves are afkted, as can be seen in Fig_‘2b_ A is moving slower so 
that both the position and height of its curve are changed in comparison with Fig. 2a. . . 
The same also appears for B, but the change is much more apparent, When the 
association constants are increased, larger amounts of both A and B are moving with 
the speed of the compIex, i.e., more material is moving sbwer. For i&&e association 
constants, all A and B will be in the complex form and the completely overlapping 
curves which result will be indistinguishable from a single binomial curve. 

If the initial concentration of one of the reaetants is iilcreased to LOO m&f, the 
curve of the other reactant will change most noticeably in position &Xl shape, as can 
be seen in Fig. 2c and d. If B is in excess its cue will only broaden, whereas the 
position of the other curve will be retarded when the association constants are in- 
creased. The change is more noticeable when A is in excess. Theta, both the shape and 
position of the curve of B are changed with increasing association consfants.=For 
infinite associatk constants, the curve of the reactant present at smalIer co~zcert- 
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Fig. 2. Theoretical CCD curves according to model 1 of an interacting system, A (- )andB 
(- - -), with K,, = 0.2 and KS = 0.5. (a) [A]$ = [B];, = 1 mM and Ku = K, = 1 M-I; (b) 
[A]::, = PC,“, = 1 mM and KU = K, = lo' M-'; (c) [Attt = 1 mM, [Bet = 100 mM and Ku = 
KI = loi) M-‘; (d) [AC’, = 100 mM, ~~~~ = 1 m&f and Ku = K, = 100 M-‘. 

tration will fit a binomial curve calculated with the same partition coefficient as the 
complex, whereas the other curve will be slightly broadened. 

Ser 3. K,,, -c KA = KB -c I or 2 < KA = KB < K,,,. For the first alternative 
of this se;, the partition coefficients of A and B were both assigned the value 0.5. For 
the second alternative (with partition coefficients inverted), the curves will be mirror 
images of the curves calculated for KA = KB = 0.5. When the initial concentrations 
of A and B are equal, their curves will always coincide. 

Fig. 3a shows the calculated curves, which are the same as the binomial ones, 
for association constants of 1 M-l and the same initial concentration of A and B, 
i.e., 1 mM. 

With increasing association constants, both A and B move slower, causing a 
change in both position and shape of the curves (Fig. 3b). As before, an increased 
initial concentration of one of the reactants causes its curve to be relatively unaffected 
compared with the curve of the other reactant when the association constants are 
increased (Fig. 3~). 

This set also corresponds to the dimerization process, A + A e AZ- The 
dimerization curves are simply obtained by summing the calculated curves of A and B. 
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Fig_ 3. Theoretical CCD curves according to model 1 of an interacting system, A ( -)andB 
(- - -), with KA = Ka = 0.5. (a) [A]::* = [B]~~~ = 1 m&f and K, = Kl = 1 M-‘: (b) [Aczc = 
[Safe = 1 mM and KU = K, = l(r &FL; (c) [Ax:, = 1 mM, [BE:% = 100 mM and Ke = Kt = 100 
M-‘. 

Model 2 
_- 

The values of the partition coefficients used for the calculations of this model 
were the same as those for 

4a. With increasing association constants, the curve of A 
approaches a binomial curve calculated with the same partition coefbcient as for the 
complex. The curve of B, on the other hand, shows a peak and a dip, as can be seen 
in Fig. 4b. 

If the initial concentration of A is increased, the most significant change will 
be seen on the curve of B, whereas the curve of A is relatively unaffected in comparison 
with Fig. 4a. This is shown in Fig. 4c, where K, = Ki = 100 M-l and [_4]:‘,9 = 
100 mM. With increasing association constants, more and more of B will be retarded; ; 
as can be seen in Fig. 4d, where KU = KI = l@ MS*. To the same extent, more and 
more of A will move faster, resulting in a broadening and distortion of the curve of A. 

Set 2. KXs < iSA < KS < 1 or I < KB -c KA < KAB. Fig. 5a shows the cal- 
culated curves obtained for K,, = Kl = 1 M-l and [A]ftt = 1 mM. Neither the cu-qe 
of A nor the curve of B is affected. 

Increasing amounts of complex will be formed with increasing association 
constants, and therefore A and B will both move slower, producing a change in both 
the shape and position of their curves (Fig. 5b). If the initial concentration of A is 
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Fig. 4. Theoretical CCD curves according to model 2 of an interacting system, A < -)andB 
(- - -), with KA = 0.5 and Ke = 2.0. In all instances the initial concentration of B in every tube was 
1 mM_ (a) [A]st = 1 mM and Ku = K, = 1 M-l; (b) [A]gt = 1 mM and K, = K, = l(r M-‘; 
(c) [A]::, = 100 mM and Ku = K, = 100 M-l; (d) [A]$ = 100 m&4 and K, = K, = l(r M-‘. 

Fig. 5. Theoretical CCD curves according to model 2 of an interacting system, A ( -)andB 
(- - --), with K,, = 0.2 and Ka = 0.5. In all instances the initial concentration of B in every tube was 
1 m&f_ (a) [A]tz,o, = 1 m&f and Ku = K, = 1 M-l; (b) [A]::* = 1 mM and Ku = Kt = 1W M-‘; 
(~1 [Al::% = l&J m&f and K, = K, = 100 M-‘. 

increased, the most significant change will he seen on the curve of B, whereas the 
curve of A is relatively unchanged (Fig. 5~). 

Set 3. KAB -=c K* = KB -C I or I -C KA = KS -C KA,. The unaffected curves 
of A and B, obtained for association constants of 1 M-l and [A]fzg = 1 mM, are 
shown in Fig. 6a. When the association constants are increased, more of both A and 
B will move slower, causing a change in both position and shape of their curves 
(Fig. 6b). 

An increased initial concentration of A gives rise to a pronounced change in 
the shape of the curve of B, whereas the curve of A is relatively unaffected, as can be 
seen in Fig. 6c. The lack of variation in shape and position of the curve of the reactant 
in excess is dependent on the extent of excess. On the scale we have chosen for the 
graphs, a relatively unchanged curve will be obtained for the reactant which is in 
5C-lClO-fold excess. When the excess is lower, the resulting curves will begin to 
approach the cases where the initial concentrations are equal. 

An important consequence, not shown in the figures, is that no matter how’the 
association constants, partition coefficients and initial concentrations are chosen, the 
complex will never move in front of or lag behind the free reactants, A and B. 
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Fig. 6. Theoretical CCD curves according to model 2 of an interacting system, A ( -) and B 
(- - -), with IL = & = 0.5. In all instances the intial concentration of B in every tube was 1 mM. 
(a) EAlzt = 1 mM and K, = K, = 1 M-‘: 
[Axts = 100 mM and K, = K, = 100 M-‘. 

(b> [AC:, = 1 mM and Ku = K, = l(r M-l; (cj 

1 

DISCUSSION 

The calculations presented show that CCD of substances in a 1 :P interacting system 
can be exaWy predicted if the assumptions regarding the ideal&y of the equilibrium 
and pa&&n steps hold. Under such conditions, the influence of one substance on the 
CCD or partition of another substance is evidence for an interaction between these 
two substances. 

The shape and positiqn of the distribution curves, i.e., the total concentration 
of each substance in every tube, are not only determined by the association constants 
but also by the initial concentrations of the interacting substances. This is an ob!!ga- 
tory consequence of the law of mass action (eqn. I). The higher the initial concen- 
trations of the interacting substances are, the greater is the amount of complex formed 
and the greater are the changes in the shape and position of the curves. Hence, a 
slight difference between interacting and non-interacting distribution curves can be 
enhanced by increasing the initial concentration of one or both of the substances 
involved.. _ 
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The effect of the interaction on the theoretical distribution curves also depends 
on the partition coefficients of both the interacting substances and the complex 
formed, as is evident from the figures. By adjusting the partition coefficients according 
to the three sets, it is possible to confirm the existence of an interaction. More in- 
formation about the interacting system can be obtained by letting both of the sub- 
stances alternately be in excess. 

The CCD technique is also applicable to the quantitative determination of 
molecular interactions, i.e., the determination of the association constant. When 
carrying out an experiment both to detect and to quantify interactions, it is necessary 
not only to distribute the two substances together at different concentrations, but also 
separately to obtain the partition coefficients of the substances. The partition coeffi- 
cient of the complex formed is then given by eqn. 23, assuming that the association 
constants in the upper and lower phase, respectively, are identical, or more generally 
by eqn. 8. 

By calculating distribution curves from these partition coefficients, the assigned 
values of the association constants and the known initial concentrations of the sub- 
stances, it should be possible to find a best fitting theoretical pair of curves to match 
the experimental curves. From these calculated curves, it is then possible to obtain 
the association constants. 

The choice of biphasic system is independent of these two models, -but for 
molecules of biological origin we believe that aqueous-aqueous biphasic systems are 
the most useful. These systems, developed by Albcrtssonz9, are advantageous in many 
respecti; the advantages include the solubility and stability of macromolecillcs in these 
systems, the water content and, particularly, the ease with which the partition cocffi- 
citnt can be adjusted by changing the composition of the biphasic system. 

It has recently been shown that poly(ethylene glycol), one of the polymers used 
in these systems, favours the interaction between malate dehydrogenase and citrate 
synthase’“. Therefore, interactions might, at least between proteins, be more likely to 
occur in aqueous-aqueous biphasic systems than in buffer solutions. The solubility 
of proteins and other macromolecules can also easily be increased at least 5-fold by 
adding zwitterions, i.e., betaine or glycine, to the biphasic system without altering 
the partition coefficients_ This enhanced solubility sets a boundary for the minimal 
value of the association constants for interacting proteins and macromolecules to 
50-100 M-l;’ below which it is not possible to detect an interaction. Still weaker 
interactions can bc detected between macromolecules and small ligands, because the 
initial concentration of a small ligand can be made much higher than that of a macro- 
molecule. -The choice of model is dependent on both the nature and the amount 
available of the substances under study. 

When working with enzymes, generally the total enzymatic activities and not 
the total concentration are measured in every tube. Therefore, a change in distribution 
curves according to the first-model need not necessarily mean that the enzymes are 
interacting. It might, however, be an activation of one of the enzymes without complex 
formation. With the second model it is possible to distinguish between an interaction 
and an activation, because a change in distribution curves due to an interaction will 
always have an appearance similar to those in Figs. 4-6. On the other hand, the second 
model needs larger. amounts of material than does the first. 

The.CCD technique in aqueous-aqueous biphasic systems according to model 
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1 has, in fact, already been used to show the existence of a specili~ interaction between 
malate dehydrogenase and aspartate aminotransferaseN and an interaction between 
haemoglobin and carbonic anhydrase35_ These 
to the study of interactions between enzymes 
tricarboxylic acid cycle, and also dimerizations 
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